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CHAPTER 1. INTRODUCTION 

Ever since the beginning, rnan has been in the relentless pursuit of perfection. 

From stone age to space age, frorn caves to condorniniums, from carts to planes, 

trains and automobiles, his drive for consun1n1ation has grown considerably. The 

high quality products that are available in the market at the turn of the twenty first 

century are living legacies of his unyielding endeavor for excellence. But one fact 

that most people do not realize is the arnount of tin1e and rnoney devoted to quality 

control and non- destructive evaluation ( NDE) that is responsible for the high quality 

of products. In the past, people used to tap earthenware and other materials as a 

means of non destructive testing for defects in the material. They could sense the 

defects by the nature of the sound propagated through the material. The ultrasonic 

n1ethod of NDE is an extension of this principle. 

NDE has grown in stature over the last fifty years. Ahnost every part in an 

airplane has to undergo sorne means of NDE testing before it can be airborne. Es­

pecially with lot of aging airplanes and increasing air tragedies NDE has become 

indispensable for the aircraft companies. The automobile industry, space craft indus­

try, manufacturers of nuclear vessels and the railroad industry are some of the other 

industries, to name a few, where NDE has become essential for their survival. With 

the drive for high quality products at the lowest prices, a lot of economics also has 
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cotne into play. Thus one of the objectives of the NDE cotnmunity is to n1ake NDE 

techniques as efficient as possible. There are five n1ajor tnethods of non-destructive 

testing - radiographic (x-rays ), ultrasonic, rnagnetic, electrical and penetrant. 

Ever since its discovery, x-rays have become one of the major tnethods for medical 

and material testing. It is the in1aging capability of x-rays that has partly contributed 

to its success in medical and industrial fields. Often it becomes necessary to enhance 

or process the inforn1ation on the radiographs. NDE images are invariably noisy and 

of low contrast. Further, in indus trial inspection, technicians have to go through miles 

of radiographs tnaking their life n1onotonous. Added to the n1onotony, hutnan fatigue 

could cause then1 to err. Lot of industries prefer to have NDE as an integrated part of 

the assembly line. This implies auton1ation of non-destructive testing. A conceptual 

in1age processing system for NDE applications will have an x-ray source, an imaging 

system and a processor with the necessary intelligence that can automatically detect 

the flaws. The nature of x-ray images does not make them favorable candidates for 

automation. Extracting the flaws from low contrast images with the background 

trends is not easy. One of the main objectives of my research was to investigate what 

morphology had to offer for automated detection of flaws. 

Mathematical morphology is based on the mathematics of Minkowski Algebra. 

Minkowski ( 1903) was a set theoretician who introduced the concepts of dilation to 

characterize integral measures of certain open sets. Golay ( 1969 ), Kirsh et al. ( 1957), 

Moore ( 1968 ), Preston ( 1961 ), and Unger ( 19.58) were some of the early investigators 

who used dilation as a sn1oothing operator in image processing. Dilation as an image 

operator for shape extraction and estiination of image parameters was explored by 

Mat heron ( 1975) and Serra ( 1972). Most of the credit for introducing mathematical 
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morphology as a set theoretical n1ethod for irnage analysis goes to lVIatheron ( 1975) 

and Serra ( 1982 ). Sorne contributions were rnade by Sternberg to the ruorphology of 

gray tone functions ( 1979 & 1983 ). 

The term n1orphology denotes the study of forn1 and texture. In image process­

ing applications, it refers to the analysis of geornetric structure or texture within an 

image. The basic strategy is to understand the geometric properties of an image by 

probing the structure of the irnage with various forms known as structuring elen1ents. 

lVlathematical n1orphology provides an approach to the processing of digital itnages 

which is based on shape. Appropriately used, n1athetnatical morphological opera­

tions tend to simplify image data, preserving their essential shape characteristics and 

eliminating irrelevancies. The most in1portant contributions of mathen1atical mor­

phology are the morphological filters - opening and dosing. It is opening or closing 

with the assistance of structuring elements that n1akes it possible to extract features 

based on shape and size. 

Many papers on mathematical morphology have been published in recent years. 

The two major publications in this field are the books by Mat heron ( 1975) and Serra 

( 1982). Both of these books are very rigorous and highly mathematical. Alternatively, 

Giardina's and Dougherty's book ( 1988 ), is easy to read and gives a good introduction 

to the concepts of mathematical morphology. Serra's tutorial paper ( 1986 ), summa­

rizes much of the background material in his book. A tutorial overview is provided 

by Haralick et al. (1987). Sternberg's tutorial paper (1986) explains the concepts 

of gray-scale morphological transformations. Zhuang and Haralick ( 1986) discuss 

the splitting of structuring elements into smaller structuring elements that makes 

the software routines computationally more efficient, and Skolnick ( 1986) discusses 
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background elitnination and artifact elimination in the analysis of two-din1ensional 

electrophoretic gels of biological tnaterials. l.VIeyer ( 1986) discusses autofocussing, 

segmentation and artifact elimination in cytological specitnens. lVIaragos and Schafer 

( 1986) discuss the numerous applications of morphological filters in itnage process­

ing. Sternberg ( 1983 ), Rodenacker et al. ( 1983 ), and l\!Ieyer ( 1979) discuss biomedical 

applications. Sternberg and Sternberg ( 1983 ), and lVIandenville ( 1985) discuss auto­

mated industrial inspection using n1orphological filters. 

Chapters 2 and 3 discuss the n1athematics of binary and gray-scale morphology. 

Chapter 4 gives a review of tnorphological filters. The applications of tnorphological 

filters to NDE are discussed with results in Chapter 5. Morphological edge detection 

is covered in Chapter 6. Applications of connectivity to NDE are discussed with 

results in Chapters 7 and 8. 
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CHAPTER 2. BINARY MORPHOLOGY 

Morphological tools started becon1ing popular in the late fifties with the advent of 

digital computers. Though people in the area of itnage processing becan1e exposed to 

mathen1atical n1orphology over the last three decades, the principles of mathetnatical 

morphology have been around for aln1ost a century. It existed under the name of 

l\!Iinkowski algebra. lVIost papers on rnorphology tend to overlook the contributions 

of H. Minkowski to the developtnent of n1orphology. The Inathetnatics of n1orphology 

evolves from l\!Iinkowski Algebra. Any treatise on mathematical morphology will be 

incomplete without paying tributes to the ingenuity of 1\tiinkowski. This chapter 

begins with a brief discussion of Minkowski algebra. l\llinkowski ( 1903 ), Giardina 

and Dougherty ( 1988) discuss the algebraic properties of Minkowski addition and 

subtraction in great depth. 

Minkowski Algebra 

Translation 

Minkowski addition and subtraction are defined using translations. For an el­

ement x of Euclidean space, the translation of a set of points, A, by x is defined 

by: 

(A)x ={a+ x: a E A} (2.1) 
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X 

Figure 2.1: Translation of A by x 

where (A )x denotes A translated by x. Considering x to be a vector in the plane, 

A + x is A translated along the vector x. Thus, when A is translated by the vector 

x, every point in A is translated by x. This is illustrated in Figure 1.1. Translation 

by a single vector results in a shift of A in the spatial domain. The shape and size 

of A remains the same. 

Minkowski Addition 

Given two sets A and B in Euclidean space, the lVIinkowski addition of A by B 

is given by: 

A EBB= U(A + b); b E B (2.2) 

where EB denotes Minkowski addition. Minkowski addition is defined as the union 

of the translates obtained by translating every element in A by every element in B. 

Unlike translation by a single vector, A EB B does not retain the original size and 
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• • • 

• • • • • 

• • 

• • :t. ~ t. 
A B AEeB 

Figure 2.2: l\ilinkowski addition of A by B 

shape of the set A. 

Illustration of 1Vlinkowski Addition: 

Let A {(2,3),(2,4),(3,3),(3,4)} 

and B { ( 1, 1 ) , ( 2, 1 )} . 

Then A+ B = {(3,4),(3,.5),(4,4),(4,5),(4,4),(4,5),(.5,4),(5,.5)} 

and A EBB {(3,4),(3,5),(4,4),(4,5),(5,4),(5,5)}. 

B consists of two elements, which are considered as two different vectors. Each 

element in A is then translated by the two elements in B. The translates that occur 

more than once are deleted to get the final dilated image. Figure 1.2 illustrates this 

process. 
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Minkowski Subtraction 

Given two sets A and B in Euclidean space, the lVIinkowski subtraction of A by 

B is defined by: 

A8B=n(A+b); bE B ( 2.3) 

where 8 denotes lVIinkowski subtraction. A is translated by every eletnent in B to 

obtain different sets of translates, each set corresponding to an element in B. All 

those elements which are co1nmon to all the different sets are retained to yield the 

final result. 

Illustration of Minkowski Subtraction 

Let A {(2,3),(2,4),(3,3),(3,4)} 

and B { ( 1 ' 1 ) ' ( 2 ' 1 ) } = { b 1 ' b2 } . 

then A+ b1 {(3,4),(3,5),(4,4),(4,.5)}, 

A +b2 {(4,4),(4,5),(5,4),(5,5)} 

and AeB ( A + b1 ) n ( B + b2 ) = { ( 4, 4), ( 4, 5)}. 

Two sets of translates are obtained by translating A by the elements in B. The 

elements common to the two sets are retained to give the Minkowski subtracted set. 

Figure 1.3 illustrates this operation. 
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• 

• • • 

• • 

• • 

t. t.~ 

A 8 A98 

Figure 2.3: ~Iinkowski subtraction of A by B 

Binary Morphology 

Binary l\llorphology evolved from the rnathematics of Minkowski algebra. l\llinkowski 

addition and subtraction were introduced by Minkowski early in the twentieth century 

as set theoretic operations. The binary n1orphological operation, dilation is exactly 

the same as Minkowski addition. In binary morphology, we deal with images instead 

of sets. Binary morphology strictly adheres to the properties of Minkowski algebra. 

In binary morphology, we refer to A as the image undergoing the transformation and 

B as the structuring element. Dilation and erosion are the most primitive binary 

morphological operations. Dilation and erosion are building blocks in the design of 

other morphological tools. Serra ( 1972, 1982 and 1986 ), Haralick et al. ( 1987) and 

Matheron ( 1965 and 1975) are some of the pioneering researchers in binary morphol-

ogy. 
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Dilation 

Definition D-1: Let A and B be subsets of Euclidean space. The dilation of A 

by B is denoted by A ffi B and is defined by: 

ACBB={clc=a+bforsomea E Aandb E B}. (2.4) 

where C is the resulting image in Euclidean space. This is read as A dilated by B is 

the set C, which is obtained by translating every element in A by every element in 

B. 

Definiton D-2: The dilation of A by B is given by : 

AffiB = U(A)b; bE B. (2.5) 

This is the definition for lVIinkowski addition. Binary dilation is the satne as Minkowski 

addition. The two definitions are exactly the satne. This definition emphasizes the 

role of image shifting in impletnenting dilation. In addition to being shifted in spatial 

domain, the image grows as a result of dilation. 

Illustration of Dilation: Figure 1.4 is a simple case in which the image A has 

a single bright pixel with all the other pixels being zeros. Black dots represent 

bright pixels. The origin is at the bottom left hand corner. The structuring element 

has three bright pixels as given in the figure. The bright pixel in A is translated 

individually by every pixel in B and the set union of all the translates is taken to 

obtain the dilated image. The dilation process can be visualized as a slightly different 

operation. The origin of the structuring element is moved to every bright pixel in A. 

At each alignment of the origin of B with A, B is superimposed on A. Proceeding 

in this manner, we get the final dilated image. Figure 1.5 also illustrates binary 
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0 

• • • • 

t. ~ • t.. 
A B AffiB 

Figure 2.4: Illustration of binary dilation 

dilation. In this case, A has four bright pixels. Thus four different sets of translates 

are obtained and the set union of these translates gives the dilated image. 

Let A = { ( 0, 0)' ( 1' 0)' ( 0, 1)' ( 1' 1)} 

and B = {(0,0),(1, 1),(2,0)} = {b1,b2,b3}· 

Then A + b1 = {(0,0),(1,0), (0, 1),(1, 1)}, 

A + b2 = {(1,1),(2,1),(1,2),(2,2)}, 

A + b2 = {(2,0),(3,0),(2,1),(2,3)} 

and A E9 B = (A + b1 ) U (A + b2 ) U (A + b3 ) 

= { ( 0, 0)' ( 1' 0 ), ( 0, 1)' ( 1' 1)' ( 2, 1 ), ( 1' 2)' ( 2' 2)' ( 2, 0)' ( 3' 0)' ( 2, 3)}. 
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• • 

0 

• 0 • • • • 

4 • ~ • ~- • • • 
[~ 

A B AE9B 

Figure 2.5: Illustration of binary dilation 

Properties of Dilation 

Property D-1: 

A EBB= B EB A. ( 2.6) 

The dilation operation is commutative because addition is commutative. 

Property D-2: 

AEB(BEBC)=(A EBB) EB C. (2.7) 

The dilation operation is associative. This property is useful if the image A is to be 

dilated by a structuring element D, which itself can be expressed as the dilation of 

B by C. Then A EB D can be computed as 

AEBD=AEB(B EB C)= (AEBB)EBC. (2.8) 

This property is commonly referred to as the chain rule for dilations. The form 

(A EB B) EB C represents a considerable savings in number of operations to be 
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perfonned when A is the irnage and B EB C is the structuring elernent. The savings 

come about because a brute force dilation by B EB C rnight take as n1any as JV2 

operations while first dilating A by B and then dilating the result by C could take 

as few as 2N operations, where N is the nun1ber of elements in B and C. 

Property D-.3: 

(A)x EBB= (A EB B)x. ( 2.9) 

This is the translation invariance property of dilation. Translating A by x and then 

dilating by B is the same as dilating A by B and then translating the result by x. 

Property D-4: 

(A)x EB (B)_.l.' =A EBB. (2.10) 

A shift in the irnage can be compensated by a shift in the structuring elen1ent in the 

opposite direction. 

Property D-5: The dilated result contains the original image if the origin belongs 

to the structuring element. Dilation is an extensive transformation when the origin 

belongs to the structuring element. Extensivity means that the original is contained 

in the dilated image. Figure 1.6 gives an example where the origin is not in the 

structuring element. A EBB has nothing in common with A. 

Property D-6: Dilation is an increasing operation. A ~ C implies A EB B ~ C EB B. 

If two images are being dilated by the same structuring element, their growth is pro­

portional to their respective sizes. 

Property D-7: 

A EB (B u C)= (A EBB) u (A EB C). ( 2.11) 
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• • • 

• • • 

• e • 

• • • 
t. • • t. 

A B 

Figure 2.6: Illustration of Property D-5 

This property pern1its a further decon1position of a structuring element into a union 

of structuring elernents. If a structuring element consists of six points, it can be 

decomposed into the union of six structuring elements, each structuring element 

consisting of a single point. 

Erosion 

Erosion is the morphological dual to dilation. Dilation is a growing operation 

whereas erosion is a shrinking operation. Erosion is the morphological transformation 

which combines two sets using the vector subtraction of set elen1ents. Erosion is not 

the same as Minkowski subtraction. However, the notation for erosion is the same as 

the notation for Minkowski subtraction. From hereon, A 8 B stands for A eroded 

by B. 
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Defi11ition E-1: Given two irnages A and B in Euclidean space, the erosion of A 

by B is defined by: 

A 8 B = { c j c + b E A for every b E B}. (2.12) 

where C is an in1age in Euclidean space. The above expression denotes that, A 

eroded by B is the image C ~ where every elernent in C translated by every elen1ent 

in B is within the original in1age A. In an algorithn1ic sense, every element in A 

is translated by every elen1ent in B; if the translates of any element of A do not 

lie in the original irnage, they are deleted. The resulting in1age is the eroded im­

age. Figure 1.7 illustrates the above definition. A is the original image and B the 

structuring elen1ent. D gives one of the intermediate stages in the process of ero­

sion. A = {(0,1),(1,1),(2,1),(0,2),{1,2),(2,2)} and B = {(0,0),(1,0),(2,0)}. 

D gives the result of'translating the pixel in the upper left hand corner, ( 0,2) by B. 

The translates {(0,2),(1,2),(2,2)} are contained in A. Thus (0,2) is retained in the 

final eroded in1age. Similarly the translates of ( 0,1) are contained in A. So ( 0,1) is 

also retained in the final image. The translates of all the other pixels are not fully 

contained in A and so they are all deleted. C is the final eroded image. 

Definition E-2: 

A e B = {c I (B)c ~A}. (2.13) 

This implies that the translates of every element in B by every element in C should 

fall within A. Here C is the eroded image. Thus the structuring element B may be 

visualized as a probe which slides across the image A, testing the spatial nature of 

A at every point. Where B translated to c can be contained in A (by placing the 

origin of B at c), then c belongs to A 8 B. 
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A B D 

Figure 2.7: Illustration of erosion 

Definition E-3: Hadwiger ( 19.57) defines the erosion of A by B as: 

A 8 B = { c I for every bE B~ there exists an 

a E A such that x = a - b} 

Reflection: The reflection of the structuring element B is given by: 

B = { -b: bE B} 

- -

- -

c 

(2.14) 

(2.1.5) 

where -b is the scalar multiple of b by -1. Thus, B is simply B, reflected about the 

origin as illustrated in Figure 1.8. 

Defi.ntion E-4: Sternberg ( 1986) defines the erosion of A by B as: 

A 8 B = U(A)_b ; where- b E B. (2.16) 

This definition clearly brings out the difference between Minkowski subtraction and 

erosion. Erosion of A by B is the intersection of all the translations of A by b, where 
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.., X 

B 

Figure 2.8: Reflection operation 

b E B. It is to be noted that, lVIinkowski subtraction and erosion are the same if and 

only if B = B, which is possible only if the structuring element is symn1etrical about 

the origin. Also, all the definitions of erosion are equivalent. Figure 1.9 illustrates 

this definition. A is the image and B is the structuring element. B is the reflection 

of the structuring element. A + b1, B + b2 and A + b3 are respectively the 

translates obtained by translating A by each element in B. C gives the final eroded 

image. C is obtained by taking the intersection of A + b1, A + b2 and A + b3. 

Properties of Erosion 

Property E-1: 

AeB ~A. (2.17) 

Erosion is a shrinking operation. In set terms, the eroded set is contained in the orig-

inal image. A transformation having this property is called anti-extensive. However, 
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Figure 2.9: Illustration of erosion 
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Figure 2.10: Illustration of Property E-1 

the erosion transformation is necessarily anti-extensive only if the origin belongs to 

the structuring element. Figure 2.10 illustrates this property. A is the original image 

and B the structuring element. The structuring element does not contain the origin. 

Notice how A 8 B does not bear any similarity to A. 

Property E-2: Erosion is translation invariant. Translating A by x and then 

eroding by B is the equivalent to eroding A by B and then translating the result by 

x. In symbols, 

Ax8B (AeB)x. 

A8Bx = (AeB)-x· 

(2.18) 

(2.19) 

Property E-3: Erosion is an increasing transformation. If A is contained in C, 

then A eroded by B will be contained in C eroded by B. This is the increasing 
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property. 

A ~ C implies A e B ~ C e B. (2.20) 

If irnage A is contained in irnage C, then the erosion of A is contained in the erosion 

of C. 

Property E-4: 

A 2 B i·mplies D e A ~ D e B. (2.21) 

If A and B are structuring elen1ents and B is contained in A, then the erosion of an 

irnage D by A is more severe than erosion by B .. This implies that D eroded by A 

will be contained in D eroded by B. This property leads to a natural ordering of the 

erosions by structuring elen1ents having the san1e shape but different sizes. 

Property E-5: The dilation and erosion transforn1ations bear a marked similar­

ity, in that what one· does to to the image foreground the other does to the in1age 

background. Dilation results in the growth of the bright pixels at the expense of the 

background. Erosion results in the growth of the background at the expense of the 

bright pixels. This property can be formalized as a duality relationship. 

(2.22) 

where B is the reflection of B and A c is the complement of A. 

Property E-6: A chain rule holds for erosion when the structuring element is 

decomposable through dilation. It is given by: 

A 8 (B EB C)= (A 8 B) 8 C. (2.23) 

This relation is important as it permits a large erosion to be computed by two succes­

sive smaller erosions. This property can be extended to structuring elements decom-



www.manaraa.com

21 

posed as the dilation of J{ structuring elernents. For instance, ifB = (B1 EB· .. EBB K ), 

then 

AeB A 9 (B 1 EB .. · EB B K) 

(···(A 9 B 1) 9 · · · 9 BK)· 

Openings and Closings 

(2.24) 

In morphological applications, dilation and erosion are applied in pairs and are 

seldon1 used individually. Though dilation and erosion are dual operators, they are 

not reciprocal operators. Dilating an irnage followed by erosion or vice versa with 

the same structuring element does not return the same image. It. is found that, when 

dilation and erosion are applied one after the other in any order, certain features in 

the image disappear. The size and shape of the features that disappear depend on the 

size and shape of the structuring elernent. Figure 2.11 illustrates this phenomenon. A 

is the image and B is the structuring element. Cis obtained by eroding A with B. C 

is then dilated by B to get D. As expected Dis not a replica of A. Successive erosion 

and dilation retained most of the features in A except for the two isolated bright 

pixels. As hinted earlier, erosion followed by dilation with a different structuring 

element will result in a totally different image. Thus based on the nature of the 

structuring element, it becomes possible to suppress certain features in the image. 

This property has been fully exploited in the two morphological filters - opening and 

closing. The concepts of opening and closing were first studied by Matheron ( 1965 

& 1975 ). It is opening and closing that shot morphology to prominence in the areas 

of pattern recognition and industrial vision applications. Morphological filtering an 

image by an opening or closing operation corresponds to the ideal non-realizable 
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Fi¥ure 2.11: Illustration of erosion followed ~y dilation 

filters of conventional linear filtering. 

Definition 0-1: The opening of image A by structuring element B is denoted by 

A o B and is defined as: 

AoB = (A8B)$B. (2.25) 

Figure 2.11 is an illustration of opening where it was possible to eliminate isolated 

bright pixels from the image. Figure 2.12 is another example of opening where the 

intent is to eliminate all those regions in the image where a circle of unit radius will 

not fit. A is the image and B is a circle of unit radius. C gives the eroded image 

and D, the opened image. Notice how the edges of the image got rounded off due to 

opening. 
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Figure 2.12: Illustration of opening 
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Figure 2.13: Illustration of closing 

Definition C-1: The closing of image A by structuring element B is denoted by 

A • B and is defined as: 

A•B=(AE&B)eB. (2.26) 

Figure 2.13 illustrates closing. A is the original image in which there is a dark pixel 

surrounded by bright pixels. B is the structuring element. C is the result of dilating 

A by B. D is the closed image. Notice how the dark pixel has been removed from 

the image. Thus, opening and closing are controllable filtering operations, where we 

can eliminate bright and dark features respectively from the image. 
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Properties of Opening and Closing 

Property 0-1: Opening transfonnation is antiextensive. This in1plies that the 

opening of A by B is necessarily contained in A, regardless of whether or not the 

origin belongs to B. 

A o B ~A. ( 2.27) 

Property 0-2: It follows fron1 the increasing property of erosion and dilation that 

opening is an increasing transformation. If A 1 ~ A2, then A 1 o B ~ A2 o B. 

Property 0-.3: An iinage once opened by a structuring eletnent ren1ains un­

changed by any further openings with the same structuring eletnent. This is the 

idempotence property of opening. 

AoB=(AoB)oB. (2.28) 

Property C-1: The closing transforn1ation is extensive. This means that closing 

of A by structuring element contains A regardless of whether or not B contains its 

origin. 

A~ AeB. (2.29) 

Property C-2: Closing is an increasing transformation. If A 1 C A2, then 

A1 • B ~ A2 • B. 

Property C-.3: Closing transformation exhibits idempotence. 

A • B =(A • B) • B. ( 2.30) 



www.manaraa.com

26 

CHAPTER 3. GRAY-SCALE MORPHOLOGY 

Binary rnorphology has severe lirnitations. The growth of morphology as a disci­

pline was handicapped by its incapability of handling multi-level irnages. Images had 

to be thresholded into two regions, bright and dark, before applying morphological 

processing. This narrows the spectrum of images on which rnorphology could be ap­

plied. It is extrernely difficult to threshold the NDE x-ray irnages we are working on 

and retain all the essential information. Gray-scale rnorphology started taking shape 

in the late seventies and early eighties with major contributions frorn Sternberg ( 1980 

and 1982) and Nakagawa and Rosenfeld (1978). The binary n1orphological operations 

of dilation, erosion, opening, and closing are all naturally extended to gray-scale im­

agery by the use of n1in and max operators. Nakagawa and Rosenfeld ( 1978) first 

discussed the use of neighborhood min and max operators. The general extension by 

Sternberg ( 1980 and 1982) strictly adhered to all the algebraic properties of binary 

morphology. Peleg and Rosenfeld ( 1981) used gray-scale morphology to generalize 

the medial axis transform to gray scale imaging. Werman and Peleg ( 1985) used gray 

scale morphology for texture feature extraction. Coleman and Sampson ( 1986) used 

gray scale morphology on range data imagery to help mate a robot to an object. 

The principles of mathematical morphology are applicable to sets in Euclidean 

or digital spaces without regard to its dimension. The extension from binary images 
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to gray-scale itnages requires the introduction of the concepts of three-dimensional 

binary in1age, utnbra and top surface. 

Three Dimensional Binary Image 

Consider a gray-scale itnage with x,y as the integral spatial coordinates and the 

intensity values in the z dotnain. Let there be 2.56 gray scale levels. This entire 

three-dirnensional space is then divided into cubes. That is at each x,y, there will 

be a column of cubes above it, called a cube stack. So a 100 x 100 image will 

have 100 x 100 x 2.56 cubes. For each x, y, the numeral one is place in the cube 

corresponding to the intensity value at that location. After placing a one in one 

cube for each x,y, all the other cubes in this cube stack are filled with zeros to give 

the three-dirnensional image. For instance, if at x = 50, y = 50, the intensity is 7.5, 

then a one is place in the cube in the stack corresponding to this intensity. All other 

cubes in this stack are filled with zeros. Chackalackal and Basart ( 1990) introduced 

the concept of a three-din1ensional binary image to sirnplify the extension of binary 

to gray-scale morphology. Figure 3.1 illustrates the concept of a three dimensional 

binary image showing one cube stack. 

Top Surface and Umbra 

Definition 1: Let A~ E3 and F = {x,y E E2 I for som.e z E E,(x,y,z) E A}. 

Here E stands for Euclidean space. and F stands for the spatial domain of A. The 

top surface of A, denoted by T[A] : F ---+ E, is defined by: 

T[A)(x,y) =max {z I (x,y, z) E A}. ( 3.1) 
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z 
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X (x,y) 

Figure 3.1: One cube stack in 3-D binary image 

In other words, the top surface is the surface passing through all the ones in the 

three-dimensional in1age. 

Defintion 2: Let F ~ E2 and a : F ----" E where F = {x, y E E2 I for some z E 

E,(x,y,z) E A}. The un1bra of a, denoted by U[a], U[a] ~ F x E, is defined by: 

U [a] = { ( x, y, z) E F x E I z ::; a( x, y)}. ( 3.2) 

Here a(x,y) is the gray scale intensity at (x,y) and is a mapping frorn the spatial 

domain (F) to the intensity (z) don1ain. F x E is the mapping from the spatial domain 

to the intensity domain. Hence, a(x,y) is the function defining the top surface of A. 

This is the definition given by Haralick et al. ( 1987). If the zero in every cube under 

the top surface in a three dimensional binary image is replaced by a one, then the 

set consisting of all the ones is called the un1bra. In other words, the umbra is the 

set consisting of the top surface and everything below it. A vertical slice of a three 

dimensional binary image showing intensity versus position is shown in Figure 3.2. It 
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Figure 3.2: U tnbra of a function 

is a one-din1ensional plot of the function a( x,y). The cells with the dots in them are 

those cells in which the ones are placed to form the three-dimensional binary image. 

Figure 3.2 also gives the umbra of the function. 

Gray Scale Dilation 

Definition3: Let F, K ~ E 2 and a : F ___... E, b : K ---+ E . K denotes the 

spatial domain of the structuring element B. The dilation of a by b, is denoted by 

a EB b, isa EB b : F EB K _. E, and is defined by: 

a EBb= T[U(a] E9 U[b]]. ( 3.3) 

Here F and K are subsets of the spatial domain and a and b are mappings from the 

spatial domain to the intensity domain. Basically, a and b are functions defining the 

top surface or the intensities of A and B. According to this definition, a( x,y) dilated 
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U[a] E9 U[b] T[U[a] e U[b]] 

Figure 3.3: Illustration of dilation using an umbra 

by b( x,y) is the top surface of the dilation of the urn bras of a and b. Figure 3.3 

illustrates this definition. The figure shows the one-dimensional function b and its 

umbra. The dilation of the umbras and the top surface of the dilation of the umbras 

are also shown. 

This method of gray scale dilation by taking the top surfaces of dilation of umbras 

is time consuming as it involves translating every element in U(a] by every element 

in U[b]. For instance, if A is a .50 x .50 image and B is a 3 x 3 image, then A E9 B 

could require as many as 50 x .50 x 256 x 9 translations. It will be shown in Theorem 

1 that only the surface elements of A and B contribute to the final result. Thus, the 

gray scale dilation of A by B is given by: 

A E9 B = T(T[AJ E9 T[B]]. ( 3.4) 

This property is illustrated in Figure 3.4. The image and the structuring element are 

the same as used in Figure 3.3. Instead of dilating the umbras, we just dilate the top 



www.manaraa.com

31 

• 
• • 

• 

t1B • 

..... .. 
T[B] T[A] 

• • 
• • • • • 

• • • • • • • • • 
• • • • 

• • • 

~ ~ 

T[A] E9 T[B] T[T[A] E9 T[B]] 

Figure 3.4: Illustration of gray scale dilation using the top surface elements 

surfaces. The final dilated result is obtained by taking the top surface of the dilation 

of the top surfaces. The final dilated image is the same as the result in Figure 3.3. 

Theorem 1: Let a : F __.. E and b : K __.. E, where F = {x,y E E 2 

for some z E E,(x,y,z) E A} and K = {x,y E E 2 I for some z E E,(x,y,z) E B}. 

Then a EB b: F EB K can be computed by: 

c(x,y) =max l,JEK {a(x- i,y- j) + b(i,j)}. ( 3 .. 5) 

x-i,y-jEF 

where c( x, y) is the gray scale intensity of the dilated image at ( x, y ). 

Proof: We have c =(a EB b)(x,y). Then c = T[U[a] EB U[b]](x,y). By definition of 
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top surface, 

c = rna.r {z i (x.J·,z) E [U[a] EB U[b]]}. ( 3.6) 

By definition of dilation, 

c n1ax { u + '' ~ for som.e i ,j E K satisfying 

x- i,-y- j E F,(x- i,-y- j,u) E U[a] and (i,j,v) E U[b]}. 

By definition of un1bra, the largest u such that (x- i,y- j,-u) E U[a] 1s u = 

a(x- i,y- j). Likewise, the largest v such that (i,j,v) E U[b] is v = b(i,j). Hence 

c max {a ( .T - i, y - j) + b(i, j) I (i, j) E K, ( x - i, y - j) E F} 

rnax i,jEK 
.T-i,y-jEAF 

{a( x - i, y - j ) + b( i, j ) } . 

Algorithn1 1: An algorithm that irnplen1ents gray scale dilation is shown pictorially 

in Figure 3 .. 5. A represents a .5 x .5 in1age and B represents a 3 x 3 structuring 

element. The x, y plane is shown and the numbers represent the intensity at that 

particular x, y. The origin of B, represented by the circled number, is at the center 

in the square box. The origin of A is at the upper left corner. The origin of B is 

made to coincide with the center element of A. Ignoring all the other elements in A 

for the moment, we translate the center element by all the elements in B as shown 

in Figure 3.5c. Translating is done by adding each of the elements in B to the center 

element in A and storing the result in the respective position as shown in Figure 3.5d. 

The origin of B is then made to coincide with the elen1ent to the right of the center 

element of A as shown in Figure 3.5e. The result of translating this element by B 

is shown in Figure 3.6f. The process is repeated for all other inner elernents in A, 

resulting in nine sets of translates. Since B is a 3 x 3 mask, we ignore the boundary 
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elements as we do not want the rnask to fall outside A. The rnaxin1um intensity at 

each corresponding pixel location in the nine set of translates is retained to give the 

final dilated image. The process can be initiated by placing the mask at any location 

in the image. 

Dilating a gray scale irnage causes the brighter regions In an 1n1age to grow. 

Brighter is a relative term and it represents regions brighter than the background. 

At the sarne time it causes regions darker than the background to shrink. For the 

process of dilation, we need an image and a three-dimensional structuring element. 

Figure 3.6 illustrates a real life application of gray scale dilation. The picture on the 

left is a digitized radiograph of a Westinghouse composite n1aterial. The bright dot­

like features are flaws. This irnage was dilated by a 9 x 9 hemispherical structuring 

element to obtain the image on the right. Notice how the flaws have grown with 

respect to the background. The flaws have been n1agnified while maintaining the 

image at the same size. The growth of the flaws depends on the size of the structuring 

element. The larger the size of the structuring element, the larger will be the growth 

of the bright regions. 

Gray Scale Erosion 

Definition4: Let F, K ~ E 2 and a : F _. E, b : K ____,. E. The erosion of a by b 

is denoted by a 8 b, a 8 b : F 8 K -+ E, and is defined by: 

a 8 b = T[U[a] 8 U(b]]. ( 3. 7) 

Here F and K are subsets of the spatial domain and a, b are mappings from the 

spatial domain to the intensity domain. Basically, a and b are functions defining the 
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Figure 3.5: Illustration of gray-scale dilation 
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Figure 3.6: The picture on the left is the digit ized image of a vVest inghouse radio­

graph (Courtesy of Westinghouse). T he one on the right is t he d ilated 
1m age 
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top surface or the intensities of A and B. According to this definition, a(x.y) eroded 

by b(x.y) is the top surface of the erosion of urnbra of a by umbra of b. Figure 3.7 

illustrates this definition. The functions a and b are the same as used in Figure 3.3. 

The figure gives the result of eroding the un1bra of a by the umbra of b. The final 

eroded in1age is obtained by taking the top surface of U[a] 8 U[b]. As in the case of 

gray scale dilation, gray scale erosion by taking the top surface of the erosion of the 

umbras is tin1e consun1ing as it involves the vector subtraction of every element in 

U[ a] by every element in U[b ]. It will be shown in Theorem 2 that only the surface 

elements of A and B contribute to the final result. Thus, the gray scale erosion of A 

by B is given by: 

A 8 B = T[T[A] $ T(B]]. (3.8) 

Instead of eroding the un1bras, we just erode the top surfaces. The eroded image is 

obtained by taking the top surface of the erosion of the top surfaces. 

Theorem 2: Let a: F - E and b: K--- E, where F = {x,y E E2 I for som.e z E 

2 E, (x,y,z) E A} and K = {x,y E E I for some z E E, (x,y, z) E B}. Then 

a 9 b: F 8 K can be computed by: 

c(x,y) =min t,]EK {a(x + i,y + j) + b(i,j)}. (3.9) 
x+i,y+jEF 

where c(x, y) is the gray scale intensity of the eroded image at (x, y ). 

Proof: We have c =(a 8 b)(x,y). Then c = T(U[a] 8 U(b]](x,y). By definition of 

top surface, 

c =max {z I (x,y, z) E (U[a] e U[b]]}. (3.10) 

By definition of erosion, 

c = max {z I for every (i,j, k) E U[b], 
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(:c, y, .:) + (i,j, k) E U[a]}. 

By definition of urnbra, 

c = tnax {.: I for every i, j E K, k S b( i, j), 

=+k::; a(.r+i,y+j)} 

max{.: I for ever-y ·i,j E K, k S b(i,jL 

=::; a(.r + i,y + j)- k}. 

But z:::; a(x + i,y + j)- k for every k :S b(i,j) implies y S a(.r + i,y + j)- b(i,j). 

Hence, 

c = max { z I for every i, j E K, z :S a ( x + i, y + j) - b( i, j)}. 

But z ::; a( x + -i,-y + j) - b(-i, j) for every i, j E K implies 

= :S mini ,j E K [a( x + i, y + j) - b( i, j) ]. 

Now, 

c max{= I.: :S mini,jEK[a(;r + i,y + j)]- b(i,j)]} 

mtn i,jEK 
x+i,y+jEF 

(a( x + i, y + j) - b( i, j)] 

( 3.11) 

Algorithm 2: An algorithm that performs gray-scale erosion is shown pictorially in 

Figure 3.7. A represents a 5 x .5 image and B represents a 3 x 3 structuring element. 

The x,y plane is shown and the numbers represent the intensity at that particular 

x,y. The origin of B, represented by the circled number, is at the center in the square 

box. The origin of B is made to coincide with the center element of A as shown in 

Figure 3.8c. Ignoring all the other elements in A, we take the negative translates 
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of the center elen1ent by the elernents in B. Negative translating is done by vector 

subtracting each of the elernents in B from the center elen1ent in A and storing the 

result at the corresponding location as shown in Figure 3.8d. The process is repeated 

for all other inner elements in A, to give nine sets of negative translates. For each 

corresponding pixel location in the nine sets, the intensity values in the nine sets of 

negative translates are compared and the minimurn intensity at each pixel is retained. 

The process can be initiated by placing the n1ask at any location in the image. 

Eroding a gray scale image causes the regions darker than the background to 

grow. At the same time it causes regions brighter than the background to shrink. 

Figure 3.8 illustrates a real life application of gray scale erosion. The picture on the 

left is a digitized radiograph of a pipe. There are two transverse cracks on the image. 

The image was eroded by a 7 x 7 hen1isphere. Notice how the flaws have grown with 

respect to the background. 

Boundary Effect: If the size of the structuring element is n x n (n being 

odd), then a region with thickness (n-1)/2 is left intact along the boundary. The 

structuring element is not centered at any pixel in this region. This prevents the 

structuring element from falling outside the image domain. Thus, the morphological 

operations do not affect the pixels in the boundary region. Consequently, it is not 

possible to extract information from the boundary region. 

Structuring Elements 

In morphological image processing, the image to be processed and the structuring 

element are an inseparable pair. The description of a morphological operation is 

not complete without specifying the structuring element. Consider the case of a 
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Figure 3.7: Illustration of gray scale erosion 

b 

d 

f 



www.manaraa.com

40 

Figure 3.8: The picture on the left is a digitized image of a pipe (Courtesy of Atlantic 
Richfield Corporation). The one on the right is the eroded image 

mechanic trying to unscrew a bolt gi\·en a ratchet and \·arious sockets. To a person 

doing image analysis. mathematical morphology is his ratchet, and the st r ucturing 

elements in a variety of shapes and sizes are the sockets. Like unscrewing a bolt . the 

person has to determine the right structuring element that will extract the required 

information . Thus ~ in applications of pattern recognition, feature extraction, the 

choice of structuring elements play a crucial role. 

In gray scale morphology, the st ructuring element could be any three dimen-

sional structure. Cones, cylinders, hemispheres and paraboloids were investigated for 

various images. The designations of n x n (e.g. 9 x 9) for a hemispherical structur-

ing element means that the spatial dimensions are n x n and the intensity over this 

region varies as a hemisphere. In Figure 1.6, it was mentioned that the image was 

dilated by a 9 x 9 hemispherical structuring element. The center of the n x n mask 
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corresponds to the znaximun1 intensity of the hezuisphere. The 9 x 9 n1ask is shown 

in two din1ensions in Figure 3.9, and in three di1nensions in Figure 3.10. 

For the image in Figure 3.6, the growth in the bright spots increases as the size of 

the 1nask increases. The expression for finding the elements in the n x n hemispherical 

mask is given by: 

2 2 2 ·w ( x, y) = g - ( g xI k ) - ( gy I k ) 

where w( x,y) is the intensity at location ( x.y ), 

g is the peak intensity at the center of the mask ( 0,0 ), 

x lies in the range [-k.k] andy lies in the range [-k,k], 

k = (n-112). 

(3.12) 

The algorith1n for finding the elen1ents in a n x n cylindrical 1nask is given by: 

If x2 + y2 :::; k2then w(:c,y) = gelse w(:c,y) = 0. (3.13) 

where g is the height of the cylinder. Also note that the mask size is always an odd 

number. The criteria for selection of structuring elements are discussed later. 

Decomposition of Structuring Elements 

Man has never been content with the speed at which he could accomplish any 

task. Fast cars, planes and computers are living legacies to his relentless pursuit to 

break the time barrier. So it is not the least surprising when he wants to process 

images in real time. Morphological routines can be time consuming depending on 

the size of the image processed and to a greater extent on the size of the structuring 

element. For instance, if we want to dilate an image by a 3 x 3 structuring element, 
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Figure 3.9: 9 x 9 mask representing a hemisphere. The height of the hemisphere is 
nine and the origin is at the center of the mask 
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each pixel in the image generates 9 translates . But if the same image is d ilated by a 

l.) x l.) structuring element. each pixel generates 225 t ranslates . Thus, there is almost 

an exponenti al increase in computational time with increase in size of structuring 

element. 

Decomposition of st ructuri ng elements can be used to reduce computational t ime 

drastically. Decornposi tion of symmetrical st ruc turing elements is just a mathemat­

ical exercise. The theo ry underlying decomposition of structuring elements is given 

by Theorem-3. 

Theorem -3: If the structuring element B has the decom posit ion B = B 1 8 B 2 .. ·EB B N . 

Then , the dilation and erosion of A by B can be performed respectively as 

A EB B 

A 8 B 

A EB (B 1 EB B 2 · · · EBB JV) =((( A 8 B 1) ffi B2) · .. ) EB B JV . (3.14) 

A 8 ( B 1 ffi B 2 · · · 9 B _V ) = ( ( (A 8 B 1 ) 8 B 2 ) · .. ) 8 B N . ( 3 .15) 
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Figure 3.11: Decomposition of a .5 x .5 cylinder 
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The major problem in decornposing a structuring elernent is detern1ining the 

N smaller structuring elements. Zhuang and Haralick ( 1986) discuss in detail the 

mathematics behind decornposing of structuring elements. Cylinder is the structuring 

element we use most in our work with NDE images and the justification is given later. 

A 5 x 5 cylinder can be expressed as the dilation of two 3 x 3 cylinders. Thsi implies 

that a 5 x .5 cylinder can be decomposed into two 3 x 3 cylinders as illustrated in 

Figure 12. This principle can be extended to a cylinder of any size. A 17 x 17 cylinder 

can be generated by eight repeated dilations with a 3 x 3 cylinder. Dilating by a 

17 x 17 cylinder generates 289 translates for each pixel in the image, whereas repeated 

dilations by 3 x 3 cylinder generates 72 translates for each pixel. 
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CHAPTER 4. MORPHOLOGICAL FILTERS 

Morphological filters are nonlinear signal transfonnations that locally n1odify 

geometric features of signals. Each signal is viewed as a set in a Euclidean space, and 

the morphological filters are set operations that transforn1 the graph of the signal 

and can provide a quantitative description of its geotnetrical structure. The appli­

cations of n1orphological filters in itnage processing and analysis are numerous and 

are discussed by Serra ( 1982) and Maragos and Schafer ( 1986 ). Areas of application 

include bion1edical image processing, automated industrial inspection, shape recog­

nition, nonlinear filtering, edge detection, noise suppression, thinning, enhancement, 

representation and coding, texture anlysis and shape smoothing. A lot of research 

is currently going on in morphological filters. Maragos and Schafer ( 1987) introduce 

the representation of classical linear filters in terms of morphological operators. Chen 

and Yan ( 1987) prove why mathematical morphology is more powerful in studying 

some vision problems than using derivatives of Gaussian-shaped filters of different 

sizes. Song and Delp ( 1989) propose a new class of morphological filters, known as 

the generalized morphological filter, for image enhancememt. This chapter introduces 

the concept of morphological filtering, hybrid filtering and sieving. 
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Opening and Closing 

Opening and closing are the two morphological filters, referred to as l\11-filters 

by Lantuejoul and Serra (1982). As rnentioned earlier, dilation and erosion are not 

inverse operations. Dilation of an image followed by erosion with the same structuring 

element will not yield the original irnage. Similarly, erosion followed by dilation will 

not yield the original in1age. This property is exploited in the designing of opening 

and closing. 

Opening: The gray-scale opening of A by B is denoted by A o B and is defined 

by: 

AoB = (A8B)EBB. ( 4.1) 

Opening can also be defined as: 

A o B = U(B)y; where(B)y CA. ( 4.2) 

where ( B )y is the translation of B to a point y element of Euclidean space. The 

result of m·athematical opening can be explained as the domain swept out by all the 

translations of B which are included in A. Opening is somewhat like a nonlinear low­

pass filter that removes features brighter than the background and smaller than the 

structuring element. However, it is not a low-pass filter. A low-pass filter would reject 

high spatial frequencies for both large and small structures. The process of opening 

is pictorially represented in Figure 4.1. Opening can be visualized as a process in 

which the structuring element is pushed pushed apex up under the top surface of 

the image and scanned along the itnage. The opened image consists of the highest 

points reached by structuring element at each pixel as it is slid under the top surface 

of the image. Figure 4.1 also shows slices through the image A and the cylindrical 
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structuring element B. The figure gives the plot of intensity versus position. Note 

how all the peaks that had a base width srnaller than the radius of the structuring 

element were removed from the image. The larger peaks were slightly clipped at the 

top. Opening an image breaks narrow isthrnuses, and elin1inates srnall islands and 

sharp peaks or capes. Figure 4.2 shows The digitized radiograph of a vVestinghouse 

composite with bright flaws. This image is opened by a 9 x 9 cylindrical structuring 

element. Notice how all the flaws disappeared fron1 the opened image given in Figure 

4.3. 

Closing: The closing of A by B is denoted by A • B and is defined by: 

A•B=(AEBB)8B. ( 4.3) 

Closing can also be defined as: 

A•B=U(B)y; where(B)yCAc. ( 4.4) 

Here ( B )y is the translation of B to a point y in Euclidean space. Thus, closing can 

also be explained as the don1ain swept out by all the translations of B which are 

included in A c. 

Closing an image fuses narrow breaks and long thin gulfs, eliminates stnall holes, 

and fills gaps. Closing behaves like a low-pass filter that removes features darker and 

smaller than the background. Closing can be visualized as a process in which we slide 

the structuring element, apex down, over the top surface of the structuring element. 

The closed image consists of the lowest points reached by the structuring element. 

Closing is pictorially represented in Figure 4.4. Closing removes all the pits smaller 

than the size of the structuring element. Larger pits are retained to a great extent 
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Figure 4.1: Pictorial Illustration of opening 
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Figure 4.2: Digiti zed radiograph of a composite (Cou rtesy of ·westingho use) 

Figure 4.3: The image of composite opened by a 9 x 9 cylinder 
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except for clipping due to the nature of the structuring elen1ent. Figure 4 .. 5 shows 

the digitized x-ray of a railroad frog with shrinkage cracks. This in1age is closed by a 

25 x 25 cylinder to give the in1age in Figure 4.6. Notice how all the shrinkage cracks 

have been removed from the in1age. 

Hybrid Filtering 

The opening of an image by a structuring element cuts down the peaks in the 

image, whereas closing the image fills up the valleys. Thus, the positive noise spikes 

in an image can be removed by opening the image wiht a small structuring eletnent 

(say 3 x 3). Similarly, the negative noise spikes can be suppressed by closing with a 

small structuring element. The cleaning effects of the opening-closing pair is utilized 

in the hybrid filter. The schematic of a hybrid filter is given in Figure 4.7. Figure 4.8 

gives the digitized image of space shuttle fuel tank and a slice through the center of 

the image showing intensity versus position. The image is noisy as can be observed 

from the slice. Figure 4.9 shows the result of hybrid filtering the image in Figure 4.8 

with a 5 x 5 hemisphere. The figure also includes a slice of the filtered image. 
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Figure 4.4: Illustration of closing 
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Figure 4 . .5: Digitized image of a frog (Cou rtesy of t he American Association of Rail­
roads) 

Figure 4.6: Image of frog closed by a 25 x 25 cylinder 
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Figure -1:. I: Schematic of a hyb rid fi l ter 

2 
Filtered 
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Figure 4.8 : Digi tized radiograph of a space shuttle fuel tank (Cou rtesy of }.'lartin 
:VIa riet.ta ) and a s lice thro ugh the image 
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Figure 4.9: Hybrid filtered image and i ts slice 
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CHAPTER 5. APPLICATION OF MORPHOLOGICAL FILTERING 

TO NDE 

Ever since the industrial revolution, the dependence of man on machine has 

grown rapidly. vVith the advent and growth of computers, we have come to the stage 

where people have more faith in computers than human judgen1ent. To err is human, 

and so it does not corne as a surprise when there is a strong rnove to replace huruans 

with machines in jobs that are subject to lot of fatigue. X-ray technicians are one 

such class of people who face extinction. An x-ray technician goes through miles of 

radiographs looking for flaws. Even, if the flaws are easily visible, factors such as 

human fatigue and the n1onotony of the job, could adversely affect his judgement. 

So the drive to make the detection of flaws automated makes sense especially in the 

aircraft industry where there is no room for error. Automated detection of flaws is 

relatively simple in cases where the flaws can be separated from the background. This 

can be done when the histogram of the in1age is bi-modal. The background and the 

nonbackground intensities can be thresholded into distinct regions. The histograms 

of NDE x-ray images often tend to be uni-modal which prohibits thresholding. So the 

first hurdle to be crossed towards automated detection is suppressing the background. 

Another approach to background elimination is to estirnate the background in­

tensity levels using some form of low pass filter (e.g., based upon a fast Fourier 
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transfonnation of the digitized itnage ). Linear filter techniques (based upon trans­

forms into the frequency don1ain) alter in1age infonnation in ways that can conflict 

with the need for precise n1easurement of the size and location of flaws that are of 

utmost importance in our work. Non-linear filters such as opening and closing can 

suppress the background but still retain size and location information with a fair 

amount of accuracy. l\llorphological features alter the intensity values of images, but 

the geometric nature of morphological filters describes the manner in which the in­

tensities are changed. Further, the extent to which the intensities are altered can 

be controlled based on the nature of the structuring element and will be a subject 

of discussion in this chapter. This chapter discusses, with illustrations, the practical 

applications of morphological filters. It also includes the report on a project we did 

for Westinghouse. 

Background Elimination 

Opening removes features brighter than the background but smaller than the 

structuring element from the image. Thus, if the features of interest are brighter 

than the background, opening the in1age by a structuring element bigger than the 

largest feature will remove the features from the image leaving behind an estimate of 

the background. Subtracting the estimate of the background from the original image 

extracts the flaws. The structuring elements most commonly used are the hemisphere 

and the cylinder. If the flaws are bright, then 

Background estimate = A o B. 

Background reduction A - (A o B) 

( 5.1) 

( .5.2) 
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where B is larger than any of the bright features of interest. The location of the 

extracted flaws will be exactly the same as in the original itnage. The size also agrees 

with the original size if the structuring eletnent exceeds the flaw size. The background 

image may still contain son1e of the intensity information. Since opening retnoves all 

the bright features stnaller than the structuring element, the extracted flaws may 

contain noise-like features smaller than the structuring element. In most cases, there 

will be an intensity disparity between the flaws and the noise-like regions permitting 

noise retnoval by thresholding. If this is not the case, the best approach will be 

to remove the noise-like features first by opening the image by a small structuring 

element (say .j x .5) and then using this image to estimate the background. The 

trade-off is that son1e of the stnaller flaws will be lost. One could always use some 

preprocessing to retnove noise before opening. Once the flaws are extracted and 

thresholded, there are many routines for locating and sizing the flaws. Figure 5.1 is 

the digitized radiograph of a composite with bright dot-like flaws. The largest flaw 

is roughly i x i pixels in size. Figure .5.2 is obtained by opening this image with 

an 11 x 11 hemisphere and gives the background estimate of the picture in Figure 

5.2. Subtracting the image in Figure .).2 from the one in Figure 5.1 gives Figure .5.3 

with the flaws extracted. There are noise-like features which can be easily removed 

by thresholding. 

Closing removes features darker than the background but smaller than the struc­

turing element frotn the image. Thus, if the features of interest are darker than 

the background, closing the image by a structuring elen1ent bigger than the largest 

feature will remove the features from the image leaving behind an estimate of the 

background. Subtracting the original image from the estimate of the background 
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Figure .).1: Digitized radiograph of a composite (Courtesy of Westinghouse) 

Figure .5.2 : Background estimate obtained by opening 
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extracts the Raws . If the Ra\\'S are dark. then 

Background estimate 

Background redt1clion 

A • B. 

(A •B)- A 

( 5.3) 

(.5.-!) 

where B is larger than any of the dark features of interest. Figure 5 .-l is an illustration 

of the pow·er of morphology to ext ract Raws that are hidden in background t rends . 

The picture on the left is the digitized radiograph of a control valve. T here is a Raw 

hidden in the transit ion region from dark to bright . The flaw is hardly visible and 

the image conditions make it difficult for most image processing routines to detect 

it. This image was closed by a 13 x 13 cy linder to obtain the background estimate. 

The image was then subtracted from the background estimate to pull out t he flaw 

as shown by the image at the center. The size and location of the flaw remains the 

same but the intensity information is inverted . The image on the right is a result of 
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Figure .SA: Extraction of a flaw hidden 1n t e t rans1 t ion regwn of a control valve 
by clos ing 

image en hancement which is discussed later in the chapter. 

Selection of Structuring Element 

.-\ variety of structuring elements have been tried on NDE images. Hemispheres 

and cylinders \vere found to be t he most useful. For t he purpose of background 

estimation. a cylinde r seems to be the ideal st ructuring element. Figure.') .. ) compares 

the opening of a one- dimensional slice of A by a cylinder and a hemisphere of the 

same radius. The image opened by the cy linder is clearly a better estimate, as 

illustrated in Figure 5.5, because it minimizes the residue of the flaw in the result. 

The top of the hemisphere may fit up into a flaw, resulting in a background surface 

that wi ll not truly measure the background level. When the background surface 

is subtracted from the original spot intensities the result will be a lowering of flaw 



www.manaraa.com

61 

Ao~ 

Ao~ 

Figure .5 .. 5: Comparing hemisphere with a cylinder in an opening operation 

intensities near the flaw peak (decreasing in effect as the flaw borders are approached). 

As seen in the figure, this problem is alleviated to a great extent by using a cylinder. 

A hemisphere of a larger radius can be comparable to a cylinder, but it will increase 

the computational time considerably. 

For filtering purposes, a hemisphere was found to be better than a cylinder. 

Owing to the abrupt edges, a cylinder clips off a lot of useful information, whereas a 

hemisphere with its rounded edges slides over or under the surface. 
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Elimination of Artifacts 

Structuring eletnents have made tnorphological filtering so flexible that one can 

improvise fancy routines. Elimination of artifacts is a good exarnple. 1\ilany radio­

graphs have artifacts that are often misleading or distort information. Artifacts could 

also be a major obstacle in automating the detection of flaws. When these artifacts 

are in the fonn of lines, opening or closing by planes can elin1inate them. Horizon­

tal and vertical structuring elements, denoted by H and V, respectively, are shown 

in Figure .5.6. If the artifacts are horizontal and bright, they can be elinunated by 

opening with a horizontal plane given by: 

Reduction of hori=ontal artifact = A o H. ( .5 .. 5) 

If the artifacts are vertical, they can be elin1inated by opening with a vertical plane 

and is given by: 

Reduction of vertical artifact =A o V. ( .5.6) 

The lengths of H and V should be less than the length of the artifacts. Diagonal 

structuring elements could be used for removing diagonal artifacts. 

Figure 5.7 shows an x-ray image of a composite material with artifacts and the 

result of artifact elimination. The two bright horizontal streaks in the picture on 

the left are artifacts. It was possible to remove the artifacts totally from the image. 

This can be largely attributed to the fact that the artifacts were perfectly horizontal. 

The image was opened by a plane of length fifteen pixels to eliminate the artifacts. 

Eliminating the artifacts make the image a lot easier to work with. 
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• 

V= • 
• 
1 
1 
1 (n+ 1 )X1 

Figure .5.6 : A horizontal structuring element , H. is on the left and a ver t ical str uc ­
turing element, V , is on the right 

Figure 5.7: The picture on the left is the image of a composit e with ar tifacts (Cour­
tesy of Westinghouse). The image on t he right is the result of artifact 
reduction 
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Detection of Cracks 

The principle of elimination of artifacts can be extended to the detection of 

cracks. Closing the image with vertical or horizontal planes gives the background 

estimate. Subtracting the background from the original leaves the cracks behind. 

Figure .5.8 gives the digitized x-ray radiograph of a pipe and the result of crack 

detection. The image on the left has a faint horizontal flaw... The flaw is pulled 

out by closing with a plane of length 17 pixels and then superimposing the result 

on the original irnage. The detected flaw is composed of linear segments. This 

technique is useful for flaw detection and not for flaw characterization. It is very 

effective in pulling out faint crack-like flaws. It does not work well in noisy conditions. 

l\!Iorphological crack detection is very simple and computationally a lot faster than 

the Hough transform. But, it lacks the versatility of Hough transform. 

Report to Westinghouse Electric Corporation on the Evaluation of 

Sample Radiographs 

The objectives of the project were to try our existing image processing routines 

on the san1ple radiographs from vVestinghouse and to check the acquisition capabili­

ties of our image capture system. A variety of image processing routines were tried on 

these images. Owing to the faintness of the flaws and the low contrast of the images, 

morphological routines outperformed most of our other image processing software. 

All the figures are given at the end of the report. 
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Figure .5 .8: T he picture on the left shows the digiti zed radiograph of a pipe (Cour­
tesy of Wes tinghouse). The picture on the right gives t he result of crack 

detection 
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Introduction 

This document reports the results of our evaluation of two sample radiographs 

sent to us in December 1987 for processing and evaluating. Sample#l shows a 

radiograph of the weldn1ent, a contact print of the radiograph, and an enlargement 

of the weld zone from the contact print. The objective of our analysis was to compare 

the enhancernent capabilities associated with the original radiograph, a contact print 

of the original radiograph, or an enlargement of the contact print. For Sample#2, 

the objective was to cornpare the single-wall radiograph with n1ultiple-shot double­

wall work. Westinghouse was also interested in finding out whether our acquisition 

system is capable of displaying the image together with the flaws. 

The region of interest n1arked on the radiographs was divided into three sections 

and each of these sections was separately digitized. With the lens available to us, 

we could not focus on the entire region of interest. This report does not include 

the processing results of every section, but only a few of the relavent ones. All the 

pictures are gray scale images. 

~rocessing Techniques and Results 

Figure 5.9 shows the digitized region of interest on the single wall shot radiograph 

of the laser-welded sleeve (Sample#1 ). The digitized image was lowpass filtered to 

reduce the noise. The filtered image was processed morphologically to remove the 

background and extract the flaws. The morphological steps were as following. The 

image was closed by a 13 x 13 hemispherical structuring element. Morphological 

closing removed the flaws from the original image leaving behind an estimate of 

the background of the image. Subtracting the estimate of the background from the 
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original irnage extracted the flaws. Figure .5.10 shows the result of rnorphological 

enhancement. Note that, in Figure .5.10, most of the background trend has been 

removed bringing out the porosity. 

To compare the enhancement capabilities associated with the radiograph~ the 

contact print, and the enlargement of the contact print, we used one of our standard 

image processing macros. It. involves first order trend removal along the colun1ns, 

followed by histograrn equalization. The trend removal is accomplished by fitting a 

first order polynomial to the columns of the image and subtracting the function fron1 

the actual data. 

Figure .5.11 shows the digitized region of interest on the radiograph. Figure 5.12 

is the trend removed irnage and Figure .5.13 is the histogram equalized image. Figure 

5.14 shows shows the digitized region of interest on the contact print. Figure .5.15 is 

the trend removed in1age and Figure .5.16, the histogram equalized. Figure 5.17 shows 

the digitized region of interest on the enlargement of the weld zone from the contact 

print. Figure 5.18 and Figure .5.19 are the trend removed and histogran1 equalized, 

respectively. Comparing Figure .5.13, Figure .5.16 and Figure .5.19, it is obvious that 

the enlargement of the contact print has the best enhancement capabilities followed 

by the original radiograph. Very little information can be obtained from the contact 

print of the radiograph. 

Figure 5.20 is a small section of the single-wall radiograph of Sample#2. Figure 

5.21 is the result of a morphological routine that detects cracks. Figure .5.22 is 

a subsection of Figure .5.20. Figure .5.23 is the result of the morphological crack 

detection routine. Figure 5.20 and Figure .5.22 show that it is possible to capture 

the faint flaws on the radiograph. Figure .5.24 is a section of the double-wall shot 
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(San1ple #2). Notice how noisy the i1nage is. Figure 5.2.5 is the result of processing 

Figure .5.24 using the crack detection routine. 

Conclusions 

For Sample#l, based on the experimenting we have done, we have no doubt 

that the enlarged contact print has the best enhancement capabilities. It tends to be 

slightly noisier than its con1petitors, but filtering can take care of this proble1n. The 

single-wall shot radiograph also brings out most of the porosity. The contact print is 

not n1uch help. 

Sample#2 has been a real challenge to our group. We had to get new lenses 

to digitize the radiographs. The flaws are very faint and narrow, and with all the 

inherent limitations of our camera we were able to do a good job of digitizing the 

radiographs. As the flaws were very thin and faint, we had to magnify the image, 

resulting in a rather noisy image. Most our routines were very sensitive to noise. Due 

to the faintness of the flaws, filtering invariably removed the desired information. \Ve 

finally decided to try so1ne morphological processing. Morphological filtering can 

pull out the flaws, but in addition pulls out a lot of noisy features. So, we had to 

improvise the morphological routines to detect cracks. This appeared to work pretty 

effectively on the Sample #2 radiographs. 

From the enhancement point of view, we have every little doubt that single-wall 

shots are better than double-wall shots. The single wall-shots are less noisier than the 

double-wall shots and further the cracks seem to appear sharper on the single-wall 

shot radiograph. We felt that the single-wall shot contained more information than 

the double-wall shot. Further, the double-wall shot radiographs seem to give more 
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false alarms than single-wall shot radiographs. 

We were successful in digitizing the radiographs together with the flaws. \Vi t h a 

reasonably good camera and the right lenses, the radiographs can be displayed on a 

monitor with good resolution. This could save lot of trouble for the technicians who 

have to go over miles of radiographs with hand lenses. 
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Figure .5..10 : Processed result. 

F igure .) .11: Picture of a single \Vall shot 

Figure 5.12: Result of trend removal 
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Figure .).13: Result of histogram equalization 

Figure .).1-! : Picture of contac t p rint 

Figure .) .15 : Result of trend removal 
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Figure .5.16: Histogram equali zed image 

Figu re .) .17: Picture of enlargement of contact print 

Figure 5.18 : Result of trend removal 
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Figure .5 .19 : Result of histogram equalization 

Figure 5.20: Picture of a small section of single wall x-ray of sample#2 
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Figure .) .21: Picture of subsection of Figure .).20 

Figure 5.22: Result of morphological processing 
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Figure .5 .23: Picture of a section of double wall shot 

Figure .5.24 : Result of morphological processing 

Figure 5.25: Binary image of Figure 5.24 
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CHAPTER 6. MORPHOLOGICAL EDGE DETECTION 

Edges are probably the most reliable descriptors of the shape of an object. For 

this reason edge detectors are commonly used in object recognition. Basically, the 

idea underlying most edge detection techniques is the computation of a local deriva­

tive operator. Such detectors are called gradient operators. Gradient operators are 

sensitive to noise and often tend to magnify it. The NDE images we work with of­

ten tend to be noisy. This in1poses severe constraints on using gradient operators. 

Though tnorphological edge detectors are sitnple, their performance is comparable to 

that of sophisticated edge focussing techniques in noisy conditions. The tnorphologi­

cal routines are relatively insensitive to noise. Further, morphological edge detection 

routines are comparable in speed to a 3 x 3 convolution operation. 1\llorphological 

edge detectors are very rarely mentioned in the literature. They have been of great 

help in our work and it deserve more than a kind word. Four different morphological 

edge detectors are discussed in this chapter. 

Morphological Gradient 

Serra ( 1982) and l\tleyer ( 1986) define the gradient in terms of morphological 

operators as: 

Gradient! =(A EBB)- (A e B) ( 6.1) 
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D D 
c a 

b d 

A AEBB A8B [(A 9 B) -(A 8 B)] 

Figure 6.1: Illustration of Gradient.l 

where B is a 3 x 3 cy linder. Figure 6.1 illustrates t his principle. As shown by t he 

figure, the boundary is two pixels thick and might appear out of focus. 

From our expenence, we found that a sha rper boundary can be obtained by 

defining t he gradient as : 

Grad·ient2 = ( A EB B ) - A = A - (A 8 B ) ( 6.2 ) 

Figure 6.2 illustrates this definition. The concep t is very easy to understand. Dilat ing 

an image by a 3 x 3 cylinder causes the brighter regions to get thicker along their 

boundaries by a pixel. Thus subtracting t he original image from t he dilated image 

pulls out the external growth of the boundaries, which is one pixel wide. An . DE 

application of this edge detector is shown in Figure 6.3. The picture on the left is t he 

digitized radiograph of a honeycomb structure. The picture on the right is obtained 

by using Gradient2 on the original. The objective of applying edge detection to the 
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A AE9B A EBB-A 

Figure 6.2: Illustration of Gradient2 

honeycon1b was to detect the signature of crushed core, which appears as a halo 

around the hexagonal structure of the honeycornb. The arrow in the picture on the 

left points to a region of interest. The image, as one can observe, is fairly noiseless. 

In the resulting irnage, the signature of crushed core appears as lines parallel to, but 

very close to, the hexagonal edges. Gradient2 is comparable in performance, as well 

as computational tirne, to the Laplacian and other gradient operators. Gradientl 

and Gradient2 are sensitive to noise but unlike conventional edge detectors do not 

magnify noise. 

A third morphological edge detector, introduced by Lee et al. ( 1986), that is to 

a great extent noise insensitive is defined by: 

Gradient3 = min {[(A EBB)- A], [A- (A 8 B]}. (6.3) 

where the min operator indicates the minimun1 of the two operators at each pixel. 

The results of this operator on ideal ramp edges are great. It is insensitive to isolated 

noise points. Unfortunately, it is not able to detect ideal step edges. This is the 

motivation for the blur minimum morphological edge detector improvised by Lee et 

al. {1986). In this edge detector, the image is first blurred that converts the ideal 
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Figure 6.3: The picture on the left is the digitized radiograph of a honeycomb ( Cour­
tesy of Joe Gray). The one on the right is t he edge detected image 
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step edges into ideal ran1p edges, and then Gradient3 is applied to the blurred in1age. 

Blur Minimum Morphologic Edge Operator 

As stated above, the image has to be blurred before applying the Gradient3 

operator. One thing to be noted is that the domain of the blurring n1ask should be 

the same as the domain of B used for dilation and erosion. The domain of a 3 x 3 

cylinder is { ( 0, 1 ), ( -1, 1 ), ( 0, 0 ), ( 1, 1 ), ( 0, -1)} and will be the domain of the blurring 

mask. Given an image A, its blurred version, I is given by : 

I(i,j) = {l(i- 1,j) + I(i,j) + I(i + 1,j) + I(i,j + 1) + I(i,j- 1)}/.5. (6.4) 

where I(iJ) is the gray scale value at (i.j). Given the blurred image I, the rnodified 

gradient edge detector is defined by: 

Gradient4 = min {[(I ffi B) -I], (I- (I 8 B)]}. ( 6 .. 5) 

Due to the blurring operation, we lose some of the edge strength. Thus, if the irnage 

is not noisy to start with, it is better to use Gradient3. It is a trade-off between 

higher signal-to-noise ratio and sharper edges when we choose between Gradient4 

and Gradient3. 

Gradient4 has been fairly successful in detecting edges in noisy images. It does a 

better job than any of the edge detection routines available to the NDE group at Iowa 

State University. Figure 6.4 is a real-time x-ray image of a honeycomb structure with 

a magnification of 6 times. Real-time x-ray images are much noisier than images 

digitized from radiographs. Figure 6.5 is the result of applying Sobel operator to 

Figure 6.4. Figure 6.6 shows the result of applying Gradient4. As in the case of 
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Figure 6.3, the objective is to detect the crushed core which appears as lines pa r aile! 

to the edges of t he hexagonal pattern . The Sobel operator is successful in detecting 

the signature of t he crushed co re . b ut as can be seen in Figure 6 .. 5 t he image is too 

noisy. The Gradient-! de tects t he edges but maintains the noise level much lower then 

that in Figure 6 . .5. 
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Figure 6 .. ) : Edge detected using Sobel operator 

Figure 6.6: Edge detected using Gradient4 
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CHAPTER 7. CONNECTIVITY 

There is no limit to man's curiosity or his eagerness to learn. \Vith the discovery 

of x-rays by Roentgen in 1895, it became possible to unveil many of the mysteries of 

the human physiology. Further, x-rays became one of the major tools in nondestruc­

tive evaluation of materials. X-rays are projections of three-dimensional objects onto 

a two-din1ensional film. Hence, information such as depth and volurne still remained 

very n1uch elusive. Such inforrnation is critical in the n1edical field when it con1es 

to sizing and locating tumors and clots. Though not so critical, sizing and locating 

the flaws helps to determine whether a manufactured part is beyond repair. A lot 

of research is currently going on in the three-dimensional reconstruction of flaws in 

materials using ton1ography, reconstruction fron1 limited angle projections, and so 

on. There are cases where the depth of the flaws are not as important as the size. 

Flaws at different depths in the material might appear as one connected cluster in 

the film plane. This happens often in the case of railway frogs. The principles of 

connectivity could be used to a certain extent in separating these flaws. Often the 

frogs are rejected based on the sizing of the individual flaws. If the size of a cer­

tain flaw exceeds a critical size, the frog may have to be rejected. Thus, it becomes 

necessary to separate the connected flaws. Another application of connectivity to 

N_DE is discussed in the following chapter. This chapter discusses an algorithm that 
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distinguishes particles that overlap in the irnage plane. It also discusses some nlor­

phological tools such as conditional dilation, hit or miss transfonn, ultimate erosion, 

thinning and thicken ing. Serra's book ( 1982) discusses all these operations is detail. 

All the images that are being dealt in this chapter are binary. 

Definitions 

Conditional Dilation: The conditional dilation of A by B with respect to X is 

denoted by A EB B; X and is defined by: 

AEBB;X = (AEBB)nX. ( i.l) 

Here A is dilated by B and all those regions common to the lirniting set X are 

retained. 

Repeated Conditional Dilation: The repeated conditional dilation of A by B is 

denoted by A EB {B}; X and is defined by: 

A EI1 {B};X = .. ·[[[(A EBB) n X] EBB] n X] EBB· ... ( i.2) 

Here A is repeatedly dilated by B until no further growth is observed in the set 

consisting of elements common to the limiting set X and the set obtained by re­

peated dilations. This sequential algorithm is of great importance as it relates to the 

connectivity of X. 

Hit or 1\Jiss Transform: For an input image X, the hit-or-miss transform is 

denoted by X Q9 T and is defined by: 

( i.3) 
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Figure 7.1: Structuring element used in hit-or-miss transfonn 
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where the structuring elen1ent T is a union of T1 and T2. T1 and T2 are disjoint 

sets. The origin should belong to either one of T1 and T2 and not to both. The hit­

or-miss transform studies the relation between the image and its complement with 

respect to the structuring element by probing the image and its con1plement with 

structuring elements. X 8 T1 hits X and xc 8 T2 n1isses X and hence the name 

hit-or-miss transform. Two sets are disjoint if they have no elements in common. 

Normally T is a 3 x 3 mask as shown in Figure 7 .1. 

Ultimate Erosion: The ultimate erosions of X consists of the set of all seeds of the 

connected components of X. Each connected component of X generates an ultimate 

erosion or a seed. Connected components are particles that appear overlapped on the 

image. A seed is the stage in the successive erosions of a particle before the particle 

disappears. Let Xi = X 8 iB, where B is a unit circle and iB is a circle of radius 

i units. Then the ultimate erosion Yi is defined to be the components of Xi which 
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Figure 7.2: Illustration of ultimate erosion 

vanish from any larger erosion xj (j greater than i ), and is given by: 

Y·=X·-U· l l l 

( 7 .4) 

( 7 .. 5) 

The ultimate eroded sets of X are obtained by taking the union of all Yis. Figure 7.2 

shows a set X consisting of two connected particles. Xis are obtained by successive 

erosion with B. Y 1 and Y 2 are the ultimate eroded sets. 



www.manaraa.com

87 

Thinning and Thickening 

TlziiHzing: Thinning as the name suggests is a skeletonizing operation. By def-

inition, we thin X by T when we subtract the hit-or-miss transforrn of X frorn X. 

Thinning is denoted by X 0 T and is given by: 

XOT=X-X®T. ( 7.6) 

Here T = T1 U T2 and T1 and T2 are disjoint sets. In particular the origin cannot 

belong to both T 1 and T 2. 

Sequential Thinning: Consider a sequence {Tl} of structuring elen1ents. The 

thinning of X by the sequence {Tl} is defined by: 

( 7.7) 

Note that each T i is an union of 2 disjoint sets. Each Tl consists of an union of two 

disjoint sets. The skeleton S of X is defined in terms of thinning by: 

S = X 0 {Tl} such that S -=j:. Q). ( 7.8) 

Here X is repeatedly thinned by the same structuring element. The stage before X 

ceases to exist is the skeleton of X. 

Thickening: Thickening is the dual operation of thinning. The thickening of X 

by T is denoted by X 0 T and is defined by: 

X 8 T =XU (X® T). ( 7.9) 

Conditional Thickening: Exactly as with the conditional dilation, we can thicken 

Y within a limiting set X. This operation is called conditional thickening of Y with 
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respect to X and is denoted by: 

Y 0T;X = (Y 0 T) n X. (7.10) 

Equipped with all these tools we are ready to implen1ent the cluster fast segmentation 

developed by Meyer (1979). 

Cluster Fast Segmentation ( CFS) 

This algorithm particles that overlap. The particels are assumed to be approx­

imately convex. It is n1ade up of two distinct phases, namely: to find markers for 

the zones to be separated, and to draw the boundaries. Here the markers are the 

ultimate eroded sets Y i. The steps involved in CFS are as given. X is the set to be 

split up. 

Step 1: 

X£= X 8 iB,for i = 1,··,m, where {m: Xm #0}. (7.11) 

Here B is a unit circle, X1 = XeB, X2 = Xe2B, and so until Xm =X 8mB, and 

Xm+1 = 0. X is given on the left in Figure 7.3. The boundary after each erosion is 

given by dotted lines in the figure on the right. Notice that after the second erosion 

X splits into two and after the fifth erosion X becomes a null set. 

Step 2 ( Ultin1ate Erosion): 

(7.12) 

Here the Y is are the ultimate eroded sets or the seeds. Figure 7.4 illustrates Step 

2. The ultimate erosions are Y 2 and Y 4· This is because Y 2 and Y 4 cease to exist 

after the third and fifth erosions respectively. 
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X X9iB 

Figure i .3: Illustration of Step 1 of CFS 

Figure 7.4: Illustration of Step 2 
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u 

Figure 7.5: Illustration of Step 3 

Step 3: 

U = U Y i EB (i - 1) H; for i = 0 to m. ( 7.13) 

Here we dilate each ultimate eroded set proportional to the size of the corresponding 

component. Step 3 is illustrated in Figure 7 .. 5. It required 3 dilations and thickenings 

to obtain U, which is the final result. 

Figure 7.6 is a sitnulated x-ray image of two ellipsoidal flaws at different depths 

in an aluminum block. The picture on the left in Figure 7.7 shows the ultimate eroded 

sets and the picture on the right gives the result of CFS. One thing to be noted is 

that for CFS to work the flaws have to be nearly convex. Further, there has to be a 

constriction at the region connecting the the flaws. If these conditions are satisfied 

CFS works for clusters with any number of connected flaws. In CFS, it is practically 

impossible to restore the flaws back to original size. In the result in Figure 7.7, the 

area of the restored flaws are seventy five percent of the original size. 
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Figure 7.6: Simulated x-ray image of two flaws at different dep ths in the material 

Figure 7.7: T he pict ure on the left gives the two seeds and .the one on the right gives 
the separated flaws 
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CHAPTER 8. APPLICATION OF MATHEMATICAL 

MORPHOLOGY TO THE STUDY OF MICROSTRUCTURAL 

CHARACTERISTICS OF METAL MATRIX COMPOSITES 

In the process of n1anufacturing silicon carbide reinforced aluminum metal 1natrix 

composites, silicon carbide particles are mixed with aluminum powder and subjected 

to an extrusion process. The orientation of the silicon carbide particles in the resulting 

composite should be randon1 for the stiffness of the 1naterial to be the same in the 

three orthogonal directions. Secondary electron i1nages show that the orientation of 

the particles follow some pattern rather than being random. To determine stiffness, 

it becomes necessary to study nondestructively the microstructure characteristics 

such as the distribution of size, orientation, length and aspect ratio of the silicon 

carbide particles. In secondary electron images, it was found that many of the silicon 

carbide particles appear connected as shown in Figure 8.1. These particles have to 

be separated to obtain a good estin1ate of the stiffness. Cluster fast segmentation 

is not a reliable algorithm. A new algorithm has been developed that incorporates 

CFS and certain properties of the skeleton that make it possible to separate connected 

particles. At this stage this algorithm separates just one cluster of connected particles 

within an image. It can be easily extended to any number of clusters. 
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Morphological Skeleton 

The skeleton of a continuos object A is defined as the centers of the maximal di sks 

inscribable inside A. A disk is maximal if it is not properly contained in any other 

disk totally included in A. Hence, a maximal disk must touch t he boundary of A at 

least at two different points . A lot of work has been done on morphological skeletons . 

Lant uejoul ( 1980) defined the morphological skeleton for a continuos object. Serra 

(1982) provided an algorithm for the morphological skeleton of a discrete binary 

object. i\llaragos and Schafer ( 1986) use decomposed skeletons for coding of binary 

1mages. 

The algorithm developed by Serra for obtaining the skeleton of a binary image 

. . 
1s as g1 ven: 

Let Ao = A and i = 0. 
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do unt-il Bi = 0 

Ai+l=AieT 

Bi+l = Ai+l- (Ai+l 0 T) 

i=i+l 

enddo. 
i-1 

B = L Bk. 
k=l 

( 8.1) 

( 8.2) 

Figure 8.2 illustrates the above algorithm. T is a unit circle of radius one, A the 

image to be skeletonized, and B the morphological skeleton. The first skeletal subset 

B1 is obtained by eroding A by T, and then keeping from every eroded set (A 8 T) 

only those parts which consist of angular points and lines without thickness. These 

parts are the only ones remaining after the set difference between (A 9 T) and its 

opening (AI o T). B2 is obtained in a similar n1anner. 01 and 02 are obtained by 

opening A 1 and B 1 respectively by T. In or example, B3 is a null set and so the 

skeleton, B, is the union of B1 and B2. 

Generalized Connectivity Algorithm 

Step 1: The ultimate erosions (seeds) of the image are obtained using duster 

fast segmentation. As mentioned earlier, based on the nature of connectivity, CFS 

may be able to break the connectivity. Figure 8.3 shows a simulated in1age of the 

metal matrix composite. Figure 8.4 gives the seeds generated by CFS. Every isolated 

component in Figure 8.3 has a corresponding seed. By comparing Figure 8.4 with 

Figure 8.3, we see that CFS was able to distinguish between some of the connected 

particles. 
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Figure 8.2: Illustration of morphological skeletonizing 
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Figure 8.3: Simulated image of t he metal matrix composite showing the silicon car­
bide part icles 
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Figure 8.4: Seeds generated by CFS 

Step 2: The morphological skeleton of the image is formed using the skeletoni z-

ing algo rithm. Figure 8 . .5 gives the ske leton of Figure 8.3. 

Step 3: For each connected component that is either isolated or clustered, its 

corresponding skeleton is checked to see whether it is branched or not. .-\histogram of 

the angles made by every point in the skeleton is made. There are as many branches 

in t he skeleton as there are peaks in the histogram. If skeleton is not branched and 

the CFS generated just one seed for that component, it implies that the component 

is single. If, the skeleton if branched, there is a possibility that the component is a 

cluster of particles. To avoid the complexity in programming, a cluster with three 

connected particles will be analyzed. The picture on the top left in Figure 8.6 sho ws 

the cluster and the picture on t he top right gives the skeleton. 

. '• ... . . -
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Figure 8 . .5: Skeleton of F igure 8.3 

Step -1: If t he number of the branches of the skeleton correspond to t he number 

of seeds gene rated by C'FS, the seeds can be grown back ,.,·ith the connectivity broken. 

Step .5: If the numbers do not correspond, then the condi t ional skeleton is used 

to break the connectivi ty. The conditional skeleton is defined as the line joining the 

centers of the maximal disks of radii greate r than a critical value known as t he critical 

radius r. T he algorithm for generating the condi tional skeleton is as given: 

Let A o = A and i = 0. 

do until B i = 0 

A · 1 = A ·8 T t+ t 

( 8 .3 ) 

i = i + 1 
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Figure 8.6: Cluster with the connectivity broken 

enddo. 
i - 1 

B = ~ B ~,; . 
k=r 

(8.-l) 

The picture on the lower left gives the conditional skeleton with a critical radius 

of four. The conditional skeleton can be grown back using Step 3 in CFS to break the 

connectivity as shown in the lower right. It took four repeated conditional dilations 

to get the final result. 

... .. ·'·-
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CHAPTER 9. CONCLUSION 

vVhen we started our research in Image Analysis Using Mathematical Morphol­

ogy, every one was kind of pessirnistic as to whether this rising star of the eighties 

could handle the highly den1anding NDE images. Our group is involved in developing 

a software package to meet the image processing needs of the ND E conununi ty. This 

package contains at least a dozen rnorphological algorithrns and dernonstrates beyond 

doubt the confidence we have in the ability of morphology to handle the toughest inl­

ages. No in1age processing software package will be con1plete without morphological 

routines. 1\'Iorphological routines tend to fail when the image is too noisy and thus 

are not without drawbacks. But there are certain tasks like background elimination 

where rnorphology has no peers. 

The first two chapters of this thesis explained the concepts of binary morphology 

and gray-scale morphology. The mathematics of morphology is intense and at times 

tend to be abstract. Only the principles that directly explain mathematical morphol­

ogy have been included. Careful tailoring has been done, so that the material can 

be easily read by someone without a great mathematical background. Simple algo­

rithms that perforn1 gray-scale dilation and erosion have been included with pictorial 

illustrations. 

My research so far has opened doors to further research in many different areas. 
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One area in which a lot of research is going on currently is to implement design 

procedures for design of 1norphological filters. The state of the art of morphological 

filters depends on a priori information of the size of the flaws. This could hinder the 

automated detection of flaws, if no a priori information is available. But compared 

to digital filters, it is easier to physically visualize the operation of morphological 

filters as pictorially represented in Chapter 4. Thus, it is easier for a technician or a 

non-signal- processing person to use morphological filtering. If it becomes necessary 

to classify the flaws based on size, the sieving filter comes in handy. 

Another aspect of n1orphological filtering that has not been fully understood is 

the role played by structuring elements. The size of the structuring elements plays 

an important role in morphological filtering. But the role played by the intensity 

of the structuring element has not been fully understood. If it is possible to put 

the intensity inforn1ation to good use, it might be possible to discriminate between 

noise and flaws on the basis of intensity information. We have experin1ented with 

various symn1etric structuring elements. It will be interesting to study the effect 

of asymmetric structuring elements on gray-scale images. It was also found that a 

~ylinder was the ideal structuring element for estimating background of NDE x-ray 

images. For filtering applications, a smoothly varying surface like a hemisphere or a 

paraboloid will be appropriate. 

One thing I liked about my research was the opportunity that was available to 

work with real life problems. X-ray images are rarely a pretty sight. They often 

tend to be noisy, of low contrast and with lots of background trends and artifacts. 

Someone once stated at a image processing seminar that the best image processing 

routines are the simple minded routines such as histogram equalization, low-pass 
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filtering and high-pass filtering. He is probably right. These routines could do a 

better job on seventy five percent of the images than complicated routines such as 

the Kaln1an filtering. Most x-ray NDE in1ages are among the unfortunate twenty five 

percent. All NDE is about is detection of flaws. Extracting flaws by estimating the 

background using opening or closing is perhaps the greatest contribution of mathe­

matical morphology towards nondestructive evaluation of materials. Figures 5.3 and 

.5.4 are classic illustrations of the power of morphology. 

When working on the \Vestinghouse samples, there arose the need for a structur­

ing element that could pull out faint cracks but would leave small noise like regions 

untouched. A cylinder could be used to pull out the crack but it would have pulled 

out all the noise with it. It is then that I decided to try a plane. The plane could fit 

into the crack but not into the noise-like features. Thus, the noise-like features will 

be removed from the image. That is the beauty of morphology. It was later extended 

to the elimination of artifacts. 

Some work has been done on the connectivity problem. So far, the flaws have 

been assumed to be convex and the images binary. A lot more work is yet to be 

done on connectivity. The connectivity algorithms have to be extended to include 

gray-scale images and non-convex flaws. Studies have to be done to see whether 

connectivity properties could be extracted from stereoscopic pairs of in1ages. 

Any work is gratifying when the outcome lives up to your expectations. This 

is especially true in research where the chances of success break even with failure. 

This has been a great experience for me and the good results kept my confidence and 

interest in mathematical morphology soaring. 
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